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Abstract—In the areas of drone countermeasures, protection
of critical infrastructure, and detention facility security, jamming
of radio frequency communication systems is seeing increasing
importance. Selecting optimized radio signals for jamming a
specific target is associated with considerable efforts, as high
jamming efficiency is required. This process can be performed
experimentally by continuous combination of different tuning
parameters describing the corresponding jamming signal. The
signal is emitted and assessed by its jamming impact on the radio
link. With the amount of different parameter combinations
increasing, the number of required measurements grows
exponentially and so does the time investment. To approach this
task, we model the search for an optimized jamming signal as
an expensive black-box optimization problem. As the number
of measurements is required to be minimized while satisfying
real-world constraints arising from the practical context, feasible
algorithms have to be found in order to solve this optimization
problem. For this, we present a multidimensional iterative grid
search algorithm with superior features compared to manual
Human-in-the-Loop approaches in the fields of unpredictable
measurements and premature termination.

This paper was originally presented at the NATO Science and
Technology Organization Symposium (ICMCIS) organized by the
Information Systems Technology (IST) Panel, IST-200 RSY – the
ICMCIS, held in Skopje, North Macedonia, 16-17 May 2023.

Index Terms—RF Signals, Jamming, Algorithmic efficiency,
Optimization methods, Search problems, Iterative algorithms,
Hardware-in-the-loop, Benchmark

I. INTRODUCTION

The use of radio frequency communication jammers is
becoming increasingly important in the areas of protecting
critical infrastructure and detention facilities, as well as drone
countermeasures in the vicinity of airports, major events and
VIPs. This ensures that unintended or even hostile communi-
cation is not correctly transmitted. At the same time, friendly
communication must be affected as little as possible requiring
precise and effective jamming deployments. Especially in
mobile applications, also efficiency becomes a major point of
interest, due to limitations in supplied power.

In order to successfully interfere with a specific target, an
optimized jamming signal has to be emitted by the jamming
device. The jamming signal is set by tuning various device
parameters like pulse-form, sweep time, etc. Finding suitable

parameters describing the signal to optimally jam a certain
target is a hard task, as the amount of different parameter
combinations can be prohibitively high. The prediction of
proper parameter sets using analytical approaches can hardly
be applied, as the internals of target architectures are usually
unknown and differ greatly from case to case. Experimental
setups have to be employed instead.

The experimental approach is a time consuming process,
where the emitted jamming signal is evaluated by its jam-
ming impact on the real-world hardware target. Different
combinations of the tuning parameters have to be evaluated
successively. Associated with the transmission time of the
target and the measurement time of the lab devices, individual
measurements can take up to multiple seconds to perform.
With increasing numbers of parameters to evaluate, the total
time investment grows exponentially and becomes unfeasible.
This results in the need for a smart and time saving algorithm
to automatically determine upcoming jamming parameters
taken into account for evaluation.

In order to approach this task, we model the search for
an optimized jamming signal as mathematical optimization
problem including the experimental setup as a black-box
function. Practical problems associated with the setup like
unpredictable measurements and premature termination extend
the task. Due to the aforementioned restrictions, common
optimization techniques are ineffective or cannot be applied.

In this paper, we present a multidimensional iterative grid
search algorithm denoted as MIGS to address these problems
including the practical context. The MIGS algorithm provides a
smart search procedure by mimicking human search behaviour.
It also reflects the current state of research in the field of
optimization-related search for a set of signal parameters to
be used by a jammer, which is called jamming signal search.
Finally, the MIGS algorithm is proposed as benchmark for
further research.

We summarize our contribution in this paper as follows:

• We model the parameter tuning of RF jammers as math-
ematical optimization problem and describe its specific
properties.

• We present the MIGS algorithm as ad-hoc solution for the
stated optimization problem with respect to the practical
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context.
• We discuss the features of the MIGS algorithm and

propose it as benchmark for further research.

This article is structured as follows. In Section II we provide
an overview of related work in the fields of optimization-
related jamming signal search. In addition, we introduce more
general approaches to optimization problems from other areas
of research with similarities to the MIGS algorithm. In Sec-
tion III we explain the experimental setup within the problem
statement and deduce a mathematical model to form a black-
box optimization problem. The MIGS algorithm is introduced
in Section IV and experimental results are provided. Followed
by a discussion in Section V, we evaluate advantages and
disadvantages of the proposed algorithm. Finally, Section VI
concludes our paper.

II. RELATED WORK

With this paper, we address multiple problem domains
originating from different branches of research. For that,
this section provides an overview of the current state of
research and related work in the fields of optimization-related
jamming signal search, black-box optimization, MIGS-related
algorithms and benchmark topics. We show similarities and
compare to different approaches.

A. Optimization-related Jamming Signal Search

The optimization of radio frequency communication jam-
mers has not been a major point of interest in previous
publications. Modelling of jamming signals in the context of
mathematical optimization is underrepresented. In most cases,
tuning by hand and less sophisticated, easy to implement but
also inefficient approaches are used as ad-hoc solutions, which
can be deduced from [1]–[4].

Moving to a wider scope, the modelling of a jamming ap-
plication in wireless networks as optimization search problem
can be found in [5], where genetic algorithms are proposed as
solvers. The authors model the jamming signal with multiple
parameters applying an on-off duty cycle technique. The
dimensionality of the search space is discussed in the context
of time complexity. Genetic algorithms are compared with
the benchmark algorithm that which is based on iterative
improvement.

Advanced approaches using artifical intelligence and adap-
tive techniques [6] are more frequently published in the fields
of radar jamming. However, these research results cannot
directly be transfered to the stated domain of communication
jamming.

B. Solvers for Black-box Optimization

A large number of algorithms from simple random search
(RS), over various heuristics such as genetic algorithms (GA),
sequential model-based methods (SMBO), Bayesian optimiza-
tion (BO) up to complex hybrid methods [7] have been
presented and compared with each other [8]–[11] in order
to address the problems of black-box optimization (BBO),
hyperparameter optimization and other applications. Even

in terms of expensive optimization [12], more sophisticated
solutions like sequential surrogate-based optimization (SSBO)
algorithms have been reported in literature. Their suitability for
the stated task has not been investigated yet.

C. MIGS-related Research

In contrast to the deterministic nature of MIGS, Latin
Hypercube sampling (LHS) has been presented as statistical
method to sample from a multidimensional hypercube [13].
Similarities to the cutting-plane method [14] and branch-and-
bound methods [15] can be observed with MIGS concerning
the iteration process and its recursive implementation. The
non-exhaustive process utilizing local and global search meth-
ods has been described in [16], where a multidimensional
hypercube is iteratively divided into differently sized subrect-
angles. In contrast to MIGS, these algorithms only sample at
centerpoints of subrectangles and evaluate information gained
from already sampled points. In terms of cheap response
surfaces in grid based approaches, sparse grids have been
established as superior over full grids due to less required
evaluations [17] like being used in finite element methods.

D. Benchmark Comparison

There are common guidelines for the comparison of op-
timization algorithms as stated in [18]. Several test suites
have been presented to automatize benchmarking of different
types of optimization algorithms. The COCO platform [19]
is suitable for continuous optimizers whereas the platform
presented in [20] works on discrete optimization heuristics.
Their benefit for automatized comparison of algorithms in
the domain of slow evaluation speed has to be considered
carefully as the conduction of multiple sets of measurements is
prohibitively time consuming as reflected in [21]. In the fields
of jammer research, [5] suggests at least 30 runs per algorithm
per hyperparameter set to achieve statistical significance. This
order of magnitude is to be adopted for our further investiga-
tions and to be examined with regard to statistical significance.

III. MODELLING THE BLACK-BOX
OPTIMIZATION PROBLEM

In this section, we provide an overview of the problem state-
ment and its characteristics including the experimental setup.
Based on this, we deduce a mathematical model describing
an optimization problem by embedding the setup as black-
box function. The properties of the optimization problem are
examined with respect to the practical context.

A. Problem Setup

RF communication jamming devices require tuned settings
prior to deployment. One of these settings is the mode of
operation. It is primarily distinguished between active and
reactive. A reactive jammer may, in principle, conduct an in-
depth signal analysis [1] after detection in order to deduce
an optimized jamming signal for the particular situation. In
practice, reactive jammers will likely benefit from predefined,
optimized jamming signals in the same way as active jammers.
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Fig. 1: Experimental evaluation of a jamming signal

A certain adaptivity may even be introduced in a reactive
system by choosing a predefined jamming signal based on
some features of the detected signal. This approach would
particularly apply to mobile communications, where detection
would rather occur in the uplink, but jamming would be
applied to the downlink. As a result of the above, this paper
is focused on the determination of optimized jamming signals
predefined for certain communication systems, so that these
signals may be used in active and reactive jammers.

Another important setting of a jamming device is the
jamming signal. Each jamming signal has a certain impact on
a specific target. This jamming signal is defined by type and
different adjustable parameters. Among the most frequently
used jamming signal types are continuous wave (CW), additive
white gaussian noise (AWGN), and sawtooth or triangular
sweep. These signals are defined by different numbers of
parameters. For example, CWs are characterized by center
frequency, AWGN by center frequency and bandwidth and
sweeps by center frequency, bandwidth and sweep time. More
complex sweeps can be created by adding more parameters
[4].

The jamming device and its emitted signal is not only
required to successfully jam the considered target, but also
to do so while satisfying various constraints arising with
the real-world use case. This includes power efficiency in
environments with limited power supply, band occupancy to
allow neighouring communication and avoidance of jamming
friendly transmissions in shared channels. Different signals
vary greatly in jamming impact and power efficiency, resulting
in the task of finding the optimal parameter set respectively
the optimal jamming signal to interfere with a specific target
for the particular scenario.

In some cases, when a priori knowledge of the target’s
internal system is provided, the jamming impact can be
simulated to a certain degree of accuracy [2]. Due to the
variety in the architectures of the targets to be examined,
we cannot assume that a priori knowledge is available for all
targets, especially for targets using proprietary radio commu-
nication techniques. There are individual cases known, where
proprietary protocols have been reverse engineered in order to
simulate the behaviour of real hardware, as done for the chirp
spread spectrum (CSS) based LoRa in [22].

With the restriction of missing a priori knowledge, we
exclude the analytical approach of predicting or simulating
a jamming signal’s impact for this paper. This allows us to
explore a more generic strategy addressing a wider range of
different targets. For that, we approach the task of finding
an optimized jamming signal by using an experimental setup.
Each jamming signal is evaluated individually regarding its
jamming impact on the specific target as shown in Fig. 1. For
that to happen, the jamming signal is created as given by the
parameter set and is emitted by the jamming device to interfere
with the transmitted signal. The corresponding receiver results
are commonly measured by data loss rates like packet error
rate (PER) and bit error rate (BER) or by the number of
disconnections [23], generally denoted as quality of trans-
mission (QoT). Power measurements are typically stated as
logarithmic signal-to-jamming ratio SJR = 10 · log10(PS/PJ).
Power measurements and quality of transmission are used
to determine the jamming efficiency as a numeric metric to
describe the benefit of the examined signal with respect to the
considered case of use.

The experimental setup provides a Hardware-in-the-Loop
architecture to work with different types of targets. Parameter
sets are generated as combinations of tuning values within a
predefined range to describe a corresponding jamming signal.
The consecutive process of subsequently evaluating individual
parameter sets is also known as sequential sampling. Due to
the transmission times of real-world targets and measuring
times of the lab devices, a single evaluation step can take
several seconds. In company with involved not strictly deter-
ministic and noisy behaviour of applied hardware, repetition of
the same measurement is required to achieve statistical signif-
icance. Some communication systems may even use adaptive
methods of transmission, which may result in the avoidance
of regions (e.g. frequency ranges) where jamming efficiency
is high. As a consequence, the number of measurements to
achieve stable and statistical relevant results in such cases will
be even larger.

The number of possible parameter sets to be evaluated
grows exponentially with the increase of the number of tuning
parameters and the size of predefined value ranges. Due
to the aforenamed properties, full measurement cycles can
take up to days, weeks, and more, hence be infeasible when
using systematic and exhaustive search methods. Therefore, a
smart selection of sampling points is required to reduce the
number of evaluations significantly, while maintaining search
effectiveness by using a specialized search algorithms.

In addition, more practical aspects must also be taken into
account. Since no exact statements can be made in advance
regarding the required measuring time and the parameter value
range to be set, a technique for rough exploration of the search
space is required in order to give an initial assessment. In the
further course of the measuring, gradually refining the roughly
explored search space is intended to increase the quality of
the results. For this purpose it is important that measurements
can be terminated prematurely to adjust search parameters
without the loss of exploitability of already acquired data. This
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means, when terminating for example a linear search early,
a specific part of the search space is explored extensively,
but all other parts are not considered at all. Data aquired by
a prematurely terminated linear search is not suitable for an
initial assessment. In contrast, data evenly distributed over the
entire search space is required.

B. Mathematical Model

The stated problem is approached by modelling the exper-
imental setup as a function f . The response characteristics of
each individual component like jamming signal generator, real-
world target, lab devices and jamming efficiency calculation
are combined into that single function. With respect to the
previously mentioned restrictions, an analytical expression for
f is not given, leaving f as black-box. The optimal parameter
set x∗ describing a jamming signal for a specific target set
by f can be found by optimizing f forming a black-box
optimization problem as follows.

Let Jθ denote an arbitrary jamming signal of type θ in the
time domain as Jθ(x, t). For notational convenience, we drop
t in the further description, i.e.,

Jθ(x) := fθ(x) = fθ(x1, ..., xn) (1)

where x = (x1, ..., xn) denotes the parameter set respec-
tively the search parameter vector with search parameters
xi ∈ [b−i , b

+
i ] within bounded intervals, where b−i is the lower

and b+i the upper bound of the corresponding search dimension
indexed by i ∈ {q ∈ N | 1 ≤ q ≤ n}. The matrix b of all
bounds with

b =

b
−
1 b+1
...

...
b−n b+n

 (2)

describes the value ranges for all combinations of adjustable
parameters. It defines the search space or choice set X as
feasible set X ⊆ Rn with

X = {x ∈ Rn | ∀i : b−i ≤ xi ≤ b+i } (3)

where n denotes the dimensionality n ∈ N of the search space
X . An element x ∈ X is called feasible or candidate solution.

Let Qτ denote the jamming efficiency of a signal Jθ

interferring with target τ as defined by

Qτ (x) := fτ (Jθ(x)) = fτ (fθ(x)) (4)

Referring to the black-box function f , both functions fθ and
fτ are modelled into f resulting in the representation of the
initially presented jamming signal search problem as function
f : X → Y , which assigns the search parameter vector x to
the corresponding jamming efficiency Q with dropped indices
θ and τ by

Q(x) := y = f(x) = f(x1, ..., xn) (5)

where evaluation value y ∈ Y denotes a scalar value to define
an objective function f for a given sample point x. The set of
all feasible objective values y is denoted as evaluation space
Y ⊆ R.

Let x∗ be the optimal search parameter vector denoting an
optimization problem with

x∗ := argmax
x∈X

f(x), then Q∗ = f(x∗) (6)

defines the optimal jamming efficiency Q∗, where f requires
maximization to achieve the global optimimum, such that
f(x∗) ≥ f(x) | ∀x. Depending on the particular imple-
mentation of the jamming efficiency metric Q, modelling a
minimization problem is valid too.

Referring to the different types of jamming signals given in
Section III-A, an example sawtooth sweep signal is defined
by fixed center frequency fc equaling the targets carrier
frequency, bandwidth B and sweeptime T as follows.

θ = Sweep
n = 2

x = [B, T ]

b =

[
100 kHz 300 kHz
20ms 250ms

] (7)

When characterizing the properties of the modelled black-
box optimization problem, there is no information on con-
tinuity and differentiability of f . Therefore, commonly used
solvers utilizing gradient-based techniques cannot be applied.
In addition, f must be assumed to be multimodal containing
several local optima despite the sought global optimum. With
evaluation value y being a scalar, f is denoted as real valued
single objective function with multidimensional argument x
and may be strongly non-linear. The black-box definition
also causes x not being reducible, leading to exponentially
growing search spaces X with the increase of dimensionality
n, denoted as curse of dimensionality [17].

The experimental evaluation process causes measurements
to be noisy and not to be strictly deterministic. The associ-
ated time consumption for individual evaluations is multiple
magnitudes higher than the computational time of the search
algorithm per evaluation characterizing the problem as expen-
sive. This results in many solvers not being applicable.

Especially in large search spaces X , a very small support
of f with

supp(f) = {x ∈ X : f(x) ̸= 0} (8)

can be experimentally observed, showing a poor progagation
among objective values with adequate jamming impact. This
can be explained with a strong target dependence [3] of
the jamming signal J , resulting in a hard task to find any
configuration x in X with desirable jamming efficiency Q at
all.

As an example, a sawtooth sweep with a sweep time too
long will not affect a fast frequency-hopping spread spectrum
(FHSS) transmission, which is often used in off-the-shelf
drone remote controls. A packet will only be lost if its
current carrier frequency and the momentary sweep frequency
coincide within the instantaneous bandwidth. With a suitable
error correction, a certain packet loss may be fully recovered.
Generally, error correction results in a nonlinear behavior of
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TABLE I: Notations for MIGS algorithm

Notation Description
x search parameter vector
xi i-th search parameter
X search space
X′ transformed unit search space
n number of search dimensions [1..∞]
i index of search dimension [1..∞]

b−i , b+i lower, upper bound of search dimension i
y evaluation value
Y evaluation space
k iteration step [0..∞]
j node index [0..∞]

dk,j node in iteration k of node index j
hk node spacing in iteration k
Dk set of nodes in iteration k
Dk,i set of nodes along coordinate axis i

D̃k set of all node combinations in iteration k

D̃′
k set of all node combinations to be evaluated

the quality of transmission (QoT) versus signal-to-noise ratio
(SNR), or signal-to-jamming ratio (SJR), respectively.

The modelled optimization does not have any constraints
other than bound constraints [b−i , b

+
i ]. They are given by the

real-world constraints of used hardware. Tightening bounds
by utilizing minor a priori knowledge would increase search
efficiency and reduce time complexity markedly, if given.
Bound knowledge on the evaluation space Y is typically not
given and not strictly required for the optimization. The spaces
X and Y are indicated as being continuous for generalization
purpose. Some real-world hardware might only accept discrete
values to set up jammers and measurement equipment, which
is not reflected in the stated model.

IV. THE MIGS ALGORITHM

Due to the previously described problems and constraints
including the practical background, the selection of suitable
search algorithms is severely limited. As with the lack of
appropriate solvers for the stated setup, we present the multi-
dimensional iterative grid search algorithm denoted as MIGS
in order to provide the requested features. As a modified
version of a deterministic brute-force algorithm, this method
exhaustively evaluates the entire search space X by using a
grid structure to identify sample points x. The grid is gradually
refined over all search dimensions i. MIGS aims to mimic
intuitive human search behaviour and reflects the current state
of research in the jamming context, as no advanced research
on more sophisticated algorithms has been presented yet.
The stated implementation of MIGS expects the optimization
problem f with search space bounds [b−i , b

+
i ] and a termination

criterion like maximum number of iterations.

A. Working Principle

The MIGS algorithm defines f on the unit hypercube [0, 1]n,
where y = f(x) can be evaluated for all x ∈ [0, 1]n

requiring transformation X ′ := X → [0, 1]n of the original
search domain. The corresponding normalized lower and upper
bounds b−i = 0.0 and b+i = 1.0 for each dimension i define

(a) Iteration k = 0 (b) Iteration k = 1 (c) Iteration k = 2

Fig. 2: MIGS with 2-dimensional search problem

the search space X ′ as hypercube in a Cartesian coordinate
system, where each coordinate axis i is denoted as search
dimension i.

For an n-dimensional grid, each unit bound coordinate axis
i is subdivided into equidistant points denoted as nodes dk,j
with node index j in iteration step k. The set Dk = {dk,j | j =
0, ..., 2k} with nodes dk,j = jhk and node spacing hk = 2−k

contains all nodes dk,j along an coordinate axis i in iteration
step k. For n-dimensional grids, the Cartesian product of all
sets Dk,i along all coordinate axes i contains all possible
combinations of nodes as of

D̃k :=

n∏
i=1

Dk,i := Dk,1 × ...×Dk,n (9)

The search vector x ∈ D̃k is denoted as sample point.
The subset D̃′

k ⊆ D̃k with D̃′
k = D̃k \ D̃k−1 exclusively

contains all sample points, which have not been evaluated
in previous iterations k − 1. Per step of iteration k, the set
D̃′

k = {x1, ...,xm} with

m =

{
2n, for k = 0, (10a)
(2k + 1)n − (2k−1 + 1)n, for k ≥ 1, (10b)

is evaluated as of yl = f(xl) to form a solution tuple s =
(yl,xl) with l = 1...m.

B. Example for Determination of D̃′
k in R2

Given a 2-dimensional objective function f : X ′ ⊆
R2 → R in iteration k = 0, the set D̃0 = D̃′

0 con-
tains 2-tuples of all combinations of the lower and upper
bounds b−i and b+i of the search space X ′ resulting in
D̃′

0 = {(0.0, 0.0), (0.0, 1.0), (1.0, 0.0), (1.0, 1.0)} as shown in
Fig. 2a. Unfilled circles on the 2-dimensional grid represent
sample points xl ∈ D̃′

k, which need to be evaluated in
the current iteration k. Black filled circles represent already
evaluated sample points xl ∈ D̃k \ D̃′

k from the previous
iteration k − 1, which need to be omitted from current and
future evaluations.

With the next step of iteration k = 1 in Fig. 2b, the grid is
refined by introducing a new search node dk=1,j=1 = 0.5
into Dk=1 in the middle of two nodes from the previous
iteration k − 1 with spacing hk. Index j is updated with
every iteration in ascending order when adding new nodes.
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(a) given n = 3 unit hypercube after k = 1 cut along yz-plane

(b) resulting hyperplane in yz-plane
cut again along z-axis

(c) resulting hyperplane is
1-dimensional along z-axis

Fig. 3: Recursive reduction of dimensionality

The set of all sample points yet to be evaluated results
in set D̃′

1 = {(0.0, 0.5), (0.5, 0.0), ..., (1.0, 0.5)}. This pro-
cess continues in iteration k = 2 with the insertion of
d2,1 = 0.25 and d2,3 = 0.75 resulting in set D̃′

2 =
{(0.0, 0.25), (0.0, 0.75), ..., (1.0, 0.75)} as shown in Fig. 2c.
This refinement continues until a stopping condition has been
reached.

C. Implementation of MIGS

The implementation of MIGS concentrates on the set D̃′
k of

samples points to be evaluated in an n-dimensional search
space. Applying a recursion technique, the n-dimensional
search space has to be broken down into multiple 1-
dimensional search spaces. This is done by slicing the n-
dimensional unit hypercube search space between every node
dk,j and dk,j+1 ∀j ∈ {q ∈ N0 | 0 ≤ q ≤ 2k − 1} into
the corresponding (2k + 1) slices as (n − 1)-dimensional
hyperplanes. For the exam ple of a 3-dimensional hypercube
after iteration k = 1, Fig. 3a shows a cut along the yz-plane
between the nodes dk=1,j=0 and dk=1,j=1 on the x-axis. The
corresponding 2-dimensional hyperplane is shown in Fig. 3b
represented as hyperplane in the yz-plane.

As the dimensionality of the resulting hyperplane in Fig. 3b
is n = 2, the hyperplane is cut again in the next recursion level
along the z-axis between the nodes dk=1,j=0 and dk=1,j=1 on
the y-axis resulting in a 1-dimensional line in Fig. 3c. As
the final recursion depth has been reached due to n = 1,
all required nodes respectively sample points are evaluated as
specified in D̃′

k.
Generalizing the recursion technique, each of the resulting

(2k+1) hyperplanes after every cut can be formally considered
a hypercube with (n − 1) dimensions too. This way, the
newly created hypercubes can be successively sliced until the
resulting hyperplanes reach dimensionality n = 1. As a result
of this iteration process, for all iterations k ≥ 1, only sample
points with odd node index j have to be evaluated on the final
hyperplane with n = 1. This way it is ensured, that no sample
point is evaluated twice.

D. Experimental Evaluation

Due to the complexity of the already simplified depicted
experimental setup described in Section III-A and the difficul-
ties in interpretation of measurement results connected with
that, an approximate assessment of the feasibility of MIGS is
conducted by using artificial optimization problems as models
for the setup. This way, similarities in the structures of the
problems are exploited to transfer the evaluation results for
those artifical problems to the initially stated problem. This
results in the advantage that artifical problems in terms of
benchmark functions can be calculated considerably faster
due to their nature as pure software functions. Due to prior
research, the optimal solutions of benchmark functions are
already known, which is important in order to assess the
quality of the solutions found by the MIGS algorithm.

One of the most commonly used benchmark problems
was proposed by Rastrigin and popularized as n-dimensional
version by [24] and [25]. The function is defined as follows:

fRas(x) = 10n+
n∑

i=1

x2
i − 10cos(2πxi) (11)

where xi ∈ [−5.12, 5.12]n with global optimum at

x∗ = argmin
x∈X

fRas(x) = 0 and fRas(x
∗) = 0 (12)

When using MIGS on the 2-dimensional version of fRas, an
evaluation space landscape can be drawn as shown in Fig. 4
for different numbers of iterations. The differences in search
resolution can be observed with the number of iterations. The
visual resolution is significantly worse with smaller numbers
and thus less sample points. The global minimum of fRas

is located at x∗ = 0, which is already found in the initial
iteration k = 0. This coincidence happens by pure chance
with the stated function and is caused by the deterministic
nature MIGS.
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(a) after iteration k = 2 (b) after iteration k = 3

(c) after iteration k = 5 (d) after iteration k = 7

Fig. 4: Visualization of MIGS algorithm with 2-dimensional
Rastrigin optimization problem

TABLE II: Evaluation results of MIGS algorithm with 2-
dimensional artifical optimization problems

Rosenbrock (2D) Styblinski-Tang (2D)
k evls. x1 x2 y x1 x2 y
1 9 0.00 0.00 1.00 0.00 0.00 0.00
2 25 0.00 0.00 1.00 -2.50 -2.50 -73.44
3 81 0.00 0.00 1.00 -2.50 -2.50 -73.44
4 289 0.00 0.00 1.00 -3.13 -3.13 -76.51
5 1089 1.25 1.56 0.63 -2.81 -2.81 -78.05
6 4225 1.25 1.56 0.63 -2.97 -2.97 -78.18
7 16641 1.02 1.02 0.25 -2.89 -2.89 -78.33

xi ∈ [−5.00, 10.00]2 [−5.00, 5.00]2

f(x∗) 0.00 −78.33
x∗ (1.00, 1.00) (−2.90,−2.90)

In contrast to that, other test functions with optima far
off the grid provide different results. For example, the 2-
dimensional versions of the Rosenbrock function defined by

fRos(x) =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] (13)

and the Styblinski-Tang function defined by

fSty(x) =
1

2

n∑
i=1

(x4
i − 16x2

i + 5xi) (14)

result in TABLE II. As can be seen, the number of sample
points is exponentially growing. The amount of presented
iterations reflects practical time limits as generating more
samples becomes impracticable. With regard to this limitation,

TABLE III: Evaluation results of MIGS algorithm with 5-
dimensional artifical optimization problem

Styblinski-Tang (5D)
k evls. x1 x2 x3 x4 x5 y
1 243 0.00 0.00 0.00 0.00 0.00 0.00
2 3125 -2.50 -2.50 -2.50 -2.50 -2.50 -183.60
3 59049 -2.50 -2.50 -2.50 -2.50 -2.50 -183.60
4 1419857 -3.13 -3.13 -3.13 -3.13 -3.13 -191.30

xi ∈ [−5.00, 5.00]5

f(x∗) −195.83
x∗ (−2.90,−2.90,−2.90,−2.90,−2.90)

solutions for fRos are of moderate quality. Compared to this,
fSty can be sufficiently solved after iteration k = 7.

Referring to the initial problem of multidimensional param-
eter vectors describing a jamming signal, the aforementioned
2-dimensional benchmark functions can for example be imag-
ined to describe the function of a sweep signal characterized by
the 2 parameters bandwidth and sweeptime. As already stated,
more complex signals with higher dimensionality are possible
[4]. To illustrate that, a 5-dimensional version of Styblinski-
Tang is evaluated with the MIGS algorithm. As shown in
TABLE III, the amount of evaluations is significantly higher.
After k = 3 iterations, the best solution found reaches 93.8%
of the optimal solution’s value. This result must be interpreted
with respect to the relative definition of sufficiency, which
dependends on the actual problem. Without the specific context
of problem statement and use case, no statement can be made
as to whether 93.8% is sufficient. It must also be noted that
the number of evaluations connected with k = 4 is practically
not realizible due to the connected time investment.

V. DISCUSSION

The MIGS algorithm is presented as ad-hoc solution for
the stated problem. Due to its nature as an exhaustive search,
it must be classified as slow algorithm of moderate search
efficiency. However, it solves practical problems in real-world
applications when it comes to early termination, unknown
runtime budgets, unexpected crashes and missing measurement
readings. Noisy and not strictly deterministic measurements do
not affect the algorithm, as future sample points do not rely
on previous evaluation values. Due to the iterative procedure,
premature termination is always possible within an iteration
step without loss of diversification among evaluation values,
hence, making the algorithm particularly appealing for time
consuming measurement based blackbox optimization in the
jamming context.

As already shown in Fig. 4, the iterative feature can be used
for graphical illustration of search spaces. Equidistant sample
points are optimal for 3-dimensional representation. These
plots can be used to assess the problem’s complexity to decide
on changing parameter value ranges or switching to a more
sophisticated search algorithm, which is yet to be researched.
For future purpose, when it comes to switching to other search
algorithms, MIGS can also be used as an initial check to
validate, that jamming signals provided by all combinations
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of the extrema of the parameters’s value ranges are practically
realizable. This indicator can be used to deduce, but must not
be fully relied on, the validity of other combinations within
the value ranges to comply with the unconstrained attribute
of the black-box model.

MIGS is suitable for continuous optimization, limiting its
use with discrete domains. Discretizing grid node values
can result in re-evaluation of already used sample points,
which breaks a main feature of MIGS of not evaluating a
point twice. The algorithm cannot operate in infinite search
spaces and requires domain bounds, which is given in real-
world applications as provided by the settings of lab devices.
The non problem-specific nature of the algorithm pursues
a generalized approach, which makes it widely applicable.
However, mechanisms to select and explore interesting search
regions are matters of further research. The convenience of
ease to use comes at the expense of efficiency.

Solving the modelled optimization problem requires further
research. For that, different algorithms have to be tested and
compared to each other with respect to the expensive attribute
of the task. In terms of algorithm performance comparison,
MIGS only needs to be evaluated as function of the number
of iterations to conduct respectively the total number of
evaluations. In contrast to more complex algorithms, there
are no other hyperparameters to be tuned. Hence, comparison
to MIGS is significantly easier. It also serves the purpose of
reflecting the current state of research in the specified field of
jamming. Considering the previously mentioned arguments,
proposing MIGS as benchmark in the stated application field
appears to be reasonable.

VI. CONCLUSION

In this paper, we have shown how to describe abstract
jamming signals by different adjustable parameters and how
to model the search for feasible parameter sets as expensive
black-box optimization problem. We have characterized this
task as complex and hard, requiring special search algorithms
to approach the difficulties originating from the practical
background. The incomplete research in the field of jamming
signal optimization has been reflected with the introduction
of the MIGS algorithm as ad-hoc solution. The algorithm has
been discussed and found to be eligible as benchmark to be
compared to other algorithms.

The results of the investigation of MIGS on artificial op-
timization problems show that the particularly emphasized
properties of MIGS, especially the early stopping feature, also
appear to be useful. In a next step, the application with the
measurement setup from Fig. 1 will also be examined in
order to obtain benchmarking values for the evaluation of
further search methods. Based on this, more sophisticated and
intelligent algorithms will be investigated in the area of solving
the optimization problem modelled in this paper.
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